Article 3216

Title of the article

ON ONE APPROXIMATE METHOD OF SOLVING LINEAR HYPERSINGULAR INTEGRAL
EQUATIONS ON OPEN INTEGRATION CONTOURS

Authors

Boykov Il'ya Vladimirovich, Doctor of physical and mathematical sciences, professor, head of sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), boikov@pnzgu.ru
Boykova Alla Il'inichna, Candidate of physical and mathematical sciences, associate professor, sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), math@pnzgu.ru

Index UDK

517.392

DOI

10.21685/2072-3040-2016-2-3

Abstract

Background. Approximate methods of solving hypersingular integral equations are an actively developing area of calculus mathematics. This fact relates to multiple applications of hypersingular integral equations in aerodynamics, electrodynamics, physics, and also to the fact that analytical solutions of hypersingular integral equations are possible only in exceptional cases. Apart from direct applications in physics and engineering, hypersingular integral equations occur in approximate solution of boundary problems of mathematical physics. Recently, there have been published several works, devoted to approximate methods of solving hypersingular integral equations of the first kind on open integration contours. The interest to such equations is associated with their direct applications in aerodynamics and electrodynamics. Boundary conditions are used in all those works when building computing schemes. The present work suggests general methods of solving hypersingular integral equations of the first and second kinds on open integration contours. The authors have obtained values of convergency rapidity and error.
Materials and methods. In the study the authors used methods of functional analysis and approximation theory. The researchers considered linear onedimensionalhypersingular integral equations on open integration contours and built projection computing schemes, which were substantiated on the basis of the general theory of approximate methods of L. V. Kantorovich.
Results. The authors built computing schemes of collocation and mechanical quadrature methods of solving hypersingular integral equations on open integration contours and obtained values of computing schemes’ convergence rapidity and error.
Conclusions. The researchers built and substantiated computing schemes of approximate solution of hypersingular integral equations, determined on the segement [–1,1]. The obtained results may be used in solving problems of aerodynamics, electrodynamics, in solving equations of mathematical physics by the methods of boundary integral equations.

Key words

hypersingular integral equations, computing scheme, boundary conditions, open integration contour.

Download PDF
References

1. Bogolyubov N. N., Meshcheryakov V. A., Tavkhelidze A. N. Trudy simpoziuma po mekhanike sploshnoy sredy i rodstvennym problemam analiza [Proceedings of the symposium on continuum mechanics and associated analysis problems]. Tbilisi: Metsniereba, 1971, vol. 1, pp. 5–11.
2. Baun Dzh. E., Dzhekson E. D. Nuklon-nuklonnoe vzaimodeystvie [Nucleon-nucleon interaction]. Moscow: Atomizdat., 1975, 248 p.
3. Takhtadzhyan L. A., Faddeev L. D. Gamil'tonov podkhod v teorii solitonov [Hamilton approach in the soliton theory]. Moscow: Nauka, 1986, 528 p.
4. Ivanov V. V. Teoriya priblizhennykh metodov i ee primenenie k chislennomu resheniyu singulyarnykh integral'nykh uravneniy [The theory of approximate methods and its application in numerical solution of hypersingular integral equations]. Kiev: Naukova dumka, 1968, 287 p.
5. Gokhberg I. Ts., Fel'dman I. A. Uravneniya v svertkakh i proektsionnye metody ikh resheniya [Equations in bundles and projection methods of solving thereof]. Moscow: Nauka, 1971, 352 p.
6. Michlin S. G., Prossdorf S. Singulare Integraloperatoren. Berlin: Acad. Verl., 1980, 514 p.
7. Prossdorf S., Silbermann B. Numerical Analysis for Integral and Related Operator Equations. Berlin: Acad. Verl., 1991, 544 p.
8. Vaynikko G. M., Lifanov I. K., Poltavskiy L. N. Chislennye metody v gipersingulyarnykh integral'nykh uravneniyakh i ikh prilozheniya [Numerical methods in hypersingular integral equations and applications thereof]. Moscow: Yanus–K., 2001, 508 p.
9. Boykov I. V. Priblizhennye metody resheniya singulyarnykh integral'nykh uravneniy [Approximate methods of solving singular integral equations]. Penza: Izd-vo PGU, 2004, 316 p.
10. Boykov I. V., Romanova E. G. International Conference on Computational Mathematics. Part first. Novosibirsk, 2004, pp. 411–417.
11. Boykov I. V., Romanova E. G. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Estestvennye nauki [University proceedings. Volga region. Natural sciences]. 2006, no. 5, pp. 42–50.
12. Sizikov V. S., Smirnov A. V., Fedorov B. A. Izvestiya vuzov. Matematika [University proceedings. MAthematics]. 2004, vol. 8, pp. 62–70
13. Capobiano M. R., Criscuolo G., Junghanns P. Operator Theory: Advances and Applications. 2005, vol. 160, pp. 53–79.
14. Oseledets I. V., Tyrtyshnikov E. E. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2005, vol. 45, no. 2, pp. 315–326.
15. Boykov I. V., Ventsel E. S., Boykova A. I. Applied Numerical Mathematics. 2010,vol.60,issue 6,pp.607–628.
16. Boykov I. V., Ventsel E. S., Roudnev V. A., Boykova A. I. Applied Numerical Mathematics. 2014, vol. 86, December, pp. 1–21.
17. Boykov I. V., Zakharova Yu. F., Semov M. A., Esaf'ev A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2014, no. 3 (31), pp. 101–113.
18. Boykov I. V., Boykova A. I., Semov M. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2015, no. 3 (35), pp. 91–107.
19. Adamar Zh. Zadacha Koshi dlya lineynykh uravneniy s chastnymi proizvodnymi giperbolicheskogo tipa [The Cauchy problem for linear equations with partial derivatives of hyperbolic type]. Moscow: Nauka, 1978, 351 p.
20. Chikin L. A. Uchenye zapiski Kazanskogo gosudarstvnnogo universiteta [Proceedings of Kazan State University]. 1953, vol. 113, bk. 10, pp. 57–105.
21. Lyusternik L. A., Sobolev V. I. Elementy funktsional'nogo analiza [Gunctional analysis elements]. Moscow: Nauka, 1965, 510 p.
22. Natanson I. P. Konstruktivnaya teoriya funktsiy [Constructive theory of functions]. Moscow; Leningrad, 1949, 688 p.
23. Boykov I. V. Funktsional'nyy analiz i teoriya funktsiy [Functional analysis and theory of functions]. Issue 7. Kazan: Izd-vo KGU, 1970, pp. 3–23.
24. Kantorovich L. V., Akilov G. P. Funktsional'nyy analiz [Functional analysis]. Moscow: Nauka, 1977, 742 p.

 

Дата создания: 20.10.2016 14:04
Дата обновления: 20.10.2016 14:54